Science and Technology Highlights

LLNL researchers combined phase-field simulations (background), topological feature extraction (inside the magnifying glass, showing a pore-size analysis), property calculations and machine learning analysis to uncover the microstructure-property relationship in polymeric porous materials.
// S&T Highlights

LLNL scientists develop an efficient and comprehensive computational framework to decipher implications of porous microstructures and their properties.

Wenyu Sun, Aditya Prajapati and Jeremy Feaster in the lab where their research takes place.
// S&T Highlights

Using thin film nickel anodes, a team of LLNL scientists and collaborators figure out how to clean up chemical production.

Joe Ralph, co-lead author and inertial confinement fusion research physicist at Lawrence Livermore National Laboratory, discusses the critical role of implosion symmetry in achieving a burning plasma state at the National Ignition Facility.
// S&T Highlights

LLNL researchers retrospectively confirm that implosion asymmetry was a major aspect for fusion experiments.

Femtosecond X-ray diffraction of laser shocked aluminum-zirconium metals.
// S&T Highlights

LLNL scientists use ultra-fast X-ray probes to track the thermal response of aluminum and zirconium on shock release from experiments. 

The image looks down the barrel of a metallic carbon nanotubes embedded in an array of closely-packed carbon nanotubes with different electronic properties.
// S&T Highlights

LLNL scientists find that pure metallic carbon nanotubes are best at transporting molecules.

A machine-learning potential derived from first-principles calculations unveils the intricate mechanisms of CO2 capture in liquid ammonia.
// S&T Highlights

LLNL scientists develop a machine-learning model to gain an atomic-level understanding of CO2 capture in amine-based sorbents.

Water gets weird under nano-confinement. This image shows an exotic phase of water trapped in tiny spaces, where it interacts surprisingly with electric fields.
// S&T Highlights

LLNL scientists and a collaborator at University of Texas at Austin turn to simulations to explain the first-order response of confined water to applied electric fields.

In inertial confinement fusion experiments, lasers at Lawrence Livermore National Laboratory’s National Ignition Facility focus on a tiny fuel capsule suspended inside a cylindrical x-ray oven called a hohlraum.
// S&T Highlights

LLNL researchers make advancements in understanding and resolving the long-standing "drive-deficit" problem in indirect-drive ICF experiments.

Despite the historical consensus, trivalent actinides and lanthanides exhibit distinct chemistries. By using polyoxometalate chelators, LLNL scientists provide crystallographic and spectroscopic evidence that americium and curium yield a variety of compounds that their lanthanide counterparts are unable to form.
// S&T Highlights

LLNL researchers develop a new technique for synthesizing molecular compounds with heavy elements.

Machine learning potential derived from first-principles calculations reveals that confinement in TiO2 nanopores enhances proton transfer by reducing activation energy, highlighting the interplay between confinement, surface chemistry and topology in accelerating water reactivity.
// S&T Highlights

LLNL Researchers discover a new mechanism that can boost the efficiency of hydrogen production through water splitting.