Science and Technology Highlights

LLNL scientist Alan Hidy used the Center for Accelerator Mass Spectrometry to study fossils from Greenland.
// S&T Highlights

LLNL researchers and collaborators examine Iceland's core to discover clear evidence of ice-free times.

LLNL researchers combined phase-field simulations (background), topological feature extraction (inside the magnifying glass, showing a pore-size analysis), property calculations and machine learning analysis to uncover the microstructure-property relationship in polymeric porous materials.
// S&T Highlights

LLNL scientists develop an efficient and comprehensive computational framework to decipher implications of porous microstructures and their properties.

Joe Ralph, co-lead author and inertial confinement fusion research physicist at Lawrence Livermore National Laboratory, discusses the critical role of implosion symmetry in achieving a burning plasma state at the National Ignition Facility.
// S&T Highlights

LLNL researchers retrospectively confirm that implosion asymmetry was a major aspect for fusion experiments.

Wenyu Sun, Aditya Prajapati and Jeremy Feaster in the lab where their research takes place.
// S&T Highlights

Using thin film nickel anodes, a team of LLNL scientists and collaborators figure out how to clean up chemical production.

Femtosecond X-ray diffraction of laser shocked aluminum-zirconium metals.
// S&T Highlights

LLNL scientists use ultra-fast X-ray probes to track the thermal response of aluminum and zirconium on shock release from experiments. 

The image looks down the barrel of a metallic carbon nanotubes embedded in an array of closely-packed carbon nanotubes with different electronic properties.
// S&T Highlights

LLNL scientists find that pure metallic carbon nanotubes are best at transporting molecules.

A machine-learning potential derived from first-principles calculations unveils the intricate mechanisms of CO2 capture in liquid ammonia.
// S&T Highlights

LLNL scientists develop a machine-learning model to gain an atomic-level understanding of CO2 capture in amine-based sorbents.

Water gets weird under nano-confinement. This image shows an exotic phase of water trapped in tiny spaces, where it interacts surprisingly with electric fields.
// S&T Highlights

LLNL scientists and a collaborator at University of Texas at Austin turn to simulations to explain the first-order response of confined water to applied electric fields.

In inertial confinement fusion experiments, lasers at Lawrence Livermore National Laboratory’s National Ignition Facility focus on a tiny fuel capsule suspended inside a cylindrical x-ray oven called a hohlraum.
// S&T Highlights

LLNL researchers make advancements in understanding and resolving the long-standing "drive-deficit" problem in indirect-drive ICF experiments.

Despite the historical consensus, trivalent actinides and lanthanides exhibit distinct chemistries. By using polyoxometalate chelators, LLNL scientists provide crystallographic and spectroscopic evidence that americium and curium yield a variety of compounds that their lanthanide counterparts are unable to form.
// S&T Highlights

LLNL researchers develop a new technique for synthesizing molecular compounds with heavy elements.